
4-4 Notes: Fundamental Theorem of Calculus  Name _____________________ 

Calculus AB 

 

The Fundamental Theorem of Calculus I 
If a function f  is continuous on the closed interval ],[ ba  and F  is an antiderivative of 

f  on the interval ],[ ba , then 
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Guidelines for Using the Fundamental Theorem of 
Calculus 

1)  Provided you can find an antiderivative of f , you now have a way to evaluate a 

definite integral without having to use the limit of a sum. 
2)  When applying the Fundamental Theorem of Calculus, the following notation is 
convenient. 
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3)  It is not necessary to include a constant of integration C in the antiderivative because  
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Example 1)  Evaluate the definite integral:  ( )∫ +−
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Example 2)  Evaluate the definite integral:  ( )∫
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Example 3)  Evaluate the definite integral:  ∫
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Example 4)  Evaluate the definite integral:  ∫ +−
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Example 5)  Find the area of the region bounded by the graphs of the equations 

xxy 3
2 +−=  and y = 0 

 

 

 

 

 

 

 

 

 

 

 

 



Mean Value Theorem for Integrals 
If f  is continuous on the closed interval ],[ ba , then there exists a number c  in the 

closed interval ],[ ba  such that ( )abcfdxxf
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          Inscribed rectangle                                           Mean Value Rectangle                              Circumscribed Rectangle 
          (less than actual area)                                       (equal to actual area)                                 (greater than actual area) 
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• In other words, somewhere between the inscribed rectangle and the 
circumscribed rectangle, there is a rectangle whose area is precisely the area 
under the curve 

Example 6)  Find the value of c  guaranteed by the Mean Value Theorem for Integrals 

for the function xxf cos)( =  over the interval 
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Average Value of a Function 
If f  is integrable on the closed interval ],[ ba , then the average value of f  on the 

interval is ∫−
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• This is a result of the Mean Value Theorem of Integrals.  If ( )abcfdxxf
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• )(cf  from the Mean Value Theorem is called the average value of f  from  ],[ ba . 
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a)  Find the average value of the function over the interval.   

 

 

 

 

 

 

 

 

 

 

 

 

b)  Find all values of x in the interval for which the function equals its average value.  

 

 

 

 

 

 

 

 

 

 

 

 

Second Fundamental Theorem of Calculus 
If f  is continuous on an open interval I  containing a , then for every x in the interval, 
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• In other words, where the integrand is continuous, the derivative of a definite 

integral with respect to its upper limit is equal to the integrand evaluated at the 

upper limit 



Example 8)  Use the Second Fundamental Theorem of Calculus to find )(xF ′ . 
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